满分5 > 高中数学试题 >

已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1...

已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项和 为Sn,Tn=S2n-Sn
(Ⅰ)求证数列{manfen5.com 满分网}是等差数列,并求数列{bn}的通项公式;
(Ⅱ)求证:Tn+1>Tn
(1)将bn=an-1代入2an=1+anan+1,可得bn的递推关系式,整理变形可得 ,由等差数列的定义可得 为等差数列,故可求其通项公式,进而求出bn. (2)结合(1)中的结论,写出Tn+1-Tn的表达式,利用放缩法证明该差大于0即可. 【解析】 (1)由bn=an-1,得an=bn+1,代入2an=1+anan+1, 得2(bn+1)=1+(bn+1)(bn+1+1), 整理,得bnbn+1+bn+1-bn=0, 从而有,∵b1=a1-1=2-1=1, ∴是首项为1,公差为1的等差数列,∴,即.(5分) (2)∵,∴,,, (∵2n+1<2n+2)∴Tn+1>Tn.(12分)
复制答案
考点分析:
相关试题推荐
如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为manfen5.com 满分网,求二面角E-AF-C的余弦值.

manfen5.com 满分网 查看答案
某大学对参加了“世博会”的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分.假设该校志愿者甲、乙、丙考核为优秀的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,他们考核所得的等次相互独立.
(Ⅰ)求在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率;
(Ⅱ)记这这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.
查看答案
在△ABC中,a、b、c分别为角A、B、C的对边,且C=manfen5.com 满分网,a+b=λc,(其中λ>1).
(Ⅰ)若c=λ=2时,求manfen5.com 满分网manfen5.com 满分网的值;
(Ⅱ)若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网(λ4+3)时,求边长c的最小值及判定此时△ABC的形状.
查看答案
若{an}是等差数列,m,n,p是互不相等的正整数,有正确的结论:(m-n)ap+(n-p)am+(p-m)an=0,类比上述性质,相应地,若等比数列{bn},m,n,p是互不相等的正整数,有    查看答案
过双曲线manfen5.com 满分网的一个焦点作一条渐近线的垂线,垂足恰好落在曲线manfen5.com 满分网上,则双曲线的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.