满分5 > 高中数学试题 >

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,...

已知函数manfen5.com 满分网,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式.
(1)当,对函数求导,结合导数可求函数f(x)的单调递增区间 (2)设M、N两点的横坐标分别为x1、x2,利用导数的几何意义可得切线MP的方程,由过(1,0)可,代入可得x1,x2满足x2+2tx-t=0.由方程的思想可得,代入可求 【解析】 (1)当,--------(2分) 解得或--------(4分) 则函数f(x)有单调递增区间为--------(5分) (2)设M、N两点的横坐标分别为x1、x2, ∵ ∴切线MP的方程为 ∴…(8分) 同理,由切线PN也过点(1,0),得x22+2tx2-t=0. 由(1)、(2),可得x1,x2是方程x2+2tx-t=0的两根, ∴(*) 把(*)式代入,得, 因此,函数g(t)=--------------(15分)
复制答案
考点分析:
相关试题推荐
已知命题p:log2(x+2)-2≤log23,q:x2-2x+1-m2≤0,若¬p是¬q的充分非必要条件,试求实数m的取值范围.
查看答案
已知实数a满足a>0且a≠1.命题P:函数y=loga(x+1)在(0,+∞)内单调递减;命题Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果“P∨Q”为真且“P∧Q”为假,求a的取值范围.
查看答案
我们知道平面上n条直线最多可将平面分成manfen5.com 满分网个部分,则空间内n个平面最多可将空间分成    个部分. 查看答案
有以下四个命题:①若命题P:∀x∈R,sinx≤1,则¬P:∀x∈R,sinx>1;②∃α,β∈R,使得sin(α+β)=sinα+sinβ;③若{an}为等比数列;甲:m+n=p+q(m、n、p、q∈N*)    乙:am•an=ap•aq,则甲是乙的充要条件;④设p、q是简单命题,若“p∨q”为假命题,则“¬p∧¬q”为真命题.其中真命题的序号    查看答案
设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.