满分5 > 高中数学试题 >

等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y...

等比数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.
(Ⅰ)求r的值.
(Ⅱ)当b=2时,记bn=2(log2an=1)(n∈N+),证明:对任意的,不等式成立manfen5.com 满分网
本题考查的数学归纳法及数列的性质. (1)由已知中因为对任意的n∈N+,点(n,Sn),均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上.根据数列中an与Sn的关系,我们易得到一个关于r的方程,再由数列{an}为等比数列,即可得到r的值. (2)将b=2代入,我们可以得到数列{an}的通项公式,再由bn=2(log2an=1)(n∈n),我们可给数列{bn}的通项公式,进而可将不等式进行简化,然后利用数学归纳法对其进行证明. 【解析】 (1)因为对任意的n∈N+,点(n,Sn), 均在函数y=bx+r(b>0且b≠1,b,r均为常数的图象上. 所以得Sn=bn+r,当n=1时,a1=S1=b+r, 当n≥2时,an=Sn-Sn-1=bn+r-(bn-1+r)=bn-bn-1=(b-1)bn-1, 又因为{an}为等比数列,所以r=-1,公比为b,an=(b-1)bn-1 (2)当b=2时,an=(b-1)bn-1=2n-1,bn=2(log2an+1)=2(log22n-1+1)=2n 则, 所以 下面用数学归纳法证明不等式成立. 当n=1时,左边=,右边=, 因为,所以不等式成立. 假设当n=k时不等式成立, 即成立 则当n=k+1时, 左边= 所以当n=k+1时,不等式也成立. 由①、②可得不等式恒成立.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式.
查看答案
已知命题p:log2(x+2)-2≤log23,q:x2-2x+1-m2≤0,若¬p是¬q的充分非必要条件,试求实数m的取值范围.
查看答案
已知实数a满足a>0且a≠1.命题P:函数y=loga(x+1)在(0,+∞)内单调递减;命题Q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果“P∨Q”为真且“P∧Q”为假,求a的取值范围.
查看答案
我们知道平面上n条直线最多可将平面分成manfen5.com 满分网个部分,则空间内n个平面最多可将空间分成    个部分. 查看答案
有以下四个命题:①若命题P:∀x∈R,sinx≤1,则¬P:∀x∈R,sinx>1;②∃α,β∈R,使得sin(α+β)=sinα+sinβ;③若{an}为等比数列;甲:m+n=p+q(m、n、p、q∈N*)    乙:am•an=ap•aq,则甲是乙的充要条件;④设p、q是简单命题,若“p∨q”为假命题,则“¬p∧¬q”为真命题.其中真命题的序号    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.