已知y=f(x)=xlnx.
(1)求函数y=f(x)的图象在x=e处的切线方程;
(2)设实数a>0,求函数
在[a,2a]上的最大值.
(3)证明对一切x∈(0,+∞),都有
成立.
考点分析:
相关试题推荐
设椭圆
,直线l过椭圆左焦点F
1且不与x轴重合,l椭圆交于P、Q,左准线与x轴交于K,|KF
1|=2.当l与x轴垂直时,
.
(1)求椭圆T的方程;
(2)直线l绕着F
1旋转,与圆O:x
2+y
2=5交于A,B两点,若
,求△F
2PQ的面积S的取值范围(F
2为椭圆的右焦点).
查看答案
某选手在电视抢答赛中答对每道题的概率都是
,答错每道题的概率都是
,答对一道题积1分,答错一道题积-1分,答完n
道题后的总积分记为S
n.
(1)答完2道题后,求同时满足S
1=1且S
2≥0的概率;
(2)答完5道题后,求同时满足S
1=1且S
5=1的概率;
(3)答完5道题后,设ξ=|S
5|,求ξ的分布列及其数学期望.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=
,CD=1.
(1)证明:MN∥平面PCD;
(2)证明:MC⊥BD;
(3)求二面角A-PB-D的余弦值.
查看答案
已知向量
=(sinx,
),
=(cosx,-1).
(1)当
∥
时,求2cos
2x-sin2x的值;
(2)求f(x)=(
+
)•
在
上的单调区间,并说明单调性.
查看答案
设抛物线y
2=2px(p>0)的焦点为F,其准线与x轴交于点C,过点F作它的弦AB,若∠CBF=90°,则|AF|-|BF|=
.
查看答案