满分5 > 高中数学试题 >

已知函数. (Ⅰ)设a>0,讨论y=f(x)的单调性; (Ⅱ)若对任意x∈(0,...

已知函数manfen5.com 满分网
(Ⅰ)设a>0,讨论y=f(x)的单调性;
(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.
(Ⅰ)根据分母不为0得到f(x)的定义域,求出f'(x),利用a的范围得到导函数的正负讨论函数的增减性即可得到f(x)的单调区间; (Ⅱ)若对任意x∈(0,1)恒有f(x)>1即要讨论当0<a≤2时,当a>2时,当a≤0时三种情况讨论得到a的取值范围. 【解析】 (Ⅰ)f(x)的定义域为(-∞,1)∪(1,+∞).对f(x)求导数得f'(x)=e-ax. (ⅰ)当a=2时,f'(x)=e-2x,f'(x)在(-∞,0),(0,1)和(1,+∞)均大于0, 所以f(x)在(-∞,1),(1,+∞)为增函数. (ⅱ)当0<a<2时,f'(x)>0,f(x)在(-∞,1),(1,+∞)为增函数. (ⅲ)当a>2时,0<<1,令f'(x)=0, 解得x1=,x2=. 当x变化时,f'(x)和f(x)的变化情况如下表: f(x)在(-∞,),(,1),(1,+∞)为增函数,f(x)在(,)为减函数. (Ⅱ)(ⅰ)当0<a≤2时,由(Ⅰ)知:对任意x∈(0,1)恒有f(x)>f(0)=1. (ⅱ)当a>2时,取x=∈(0,1),则由(Ⅰ)知f(x)<f(0)=1 (ⅲ)当a≤0时,对任意x∈(0,1),恒有>1且e-ax≥1,得f(x)=e-ax≥>1. 综上当且仅当a∈(-∞,2]时,对任意x∈(0,1)恒有f(x)>1.
复制答案
考点分析:
相关试题推荐
在直角坐标系xOy中,点P到两点manfen5.com 满分网的距离之和为4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.
(1)写出C的方程;
(2)若manfen5.com 满分网,求k的值;
(3)若点A在第一象限,证明:当k>0时,恒有manfen5.com 满分网
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2manfen5.com 满分网
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

manfen5.com 满分网 查看答案
设函数f(x)=|2x+1|-|x-4|.
(1)求不等式f(x)>2的解集;
(2)求函数f(x)的最小值.
查看答案
在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知manfen5.com 满分网
(1)若△ABC的面积等于manfen5.com 满分网,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
查看答案
已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6,且a1,a3,a15成等比数列,求数列{an}的通项an
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.