满分5 > 高中数学试题 >

设等差数列{an}的前n项和为Sn,已知a3=24,S11=0. (1)求an;...

设等差数列{an}的前n项和为Sn,已知a3=24,S11=0.
(1)求an
(2)求数列{an}的前n项和Sn
(3)当n为何值时,Sn最大,并求Sn的最大值
(1)分别利用等差数列的通项公式及等差数列的前n项和的公式由a3=24,S11=0表示出关于首项和公差的两个关系式,联立即可求出首项与公差,即可得到数列的通项公式; (2)根据(1)求出的首项与公差,利用等差数列的前n项和的公式即可表示出Sn; (3)根据(2)求出的前n项和的公式得到Sn是关于n的开口向下的二次函数,根据n为正整数,利用二次函数求最值的方法求出Sn的最大值即可. 【解析】 (1)依题意有, 解之得,∴an=48-8n. (2)由(1)知,a1=40,an=48-8n, ∴Sn==-4n2+44n. (3)由(2)有,Sn=-4n2+44n=-4+121, 故当n=5或n=6时,Sn最大,且Sn的最大值为120.
复制答案
考点分析:
相关试题推荐
在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=3.
(Ⅰ)求△ABC的面积;
(Ⅱ)若b+c=6,求a的值.
查看答案
(北京卷文15)已知函数f(x)=2cos2x+sin2x
(Ⅰ)求f(manfen5.com 满分网)的值;
(Ⅱ)求f(x)的最大值和最小值.
查看答案
已知{an}是公比为q≠1的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,求使Sn>0成立的最大的n的值.
查看答案
定义:我们把满足an+an-1=k(n≥2,k是常数)的数列叫做等和数列,常数k叫做数列的公和.若等和数列{an}的首项为1,公和为3,则该数列前2010项的和S2010=    查看答案
已知数列{an} 前n项和Sn=2n2+n,则数列{an} 通项公式为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.