满分5 > 高中数学试题 >

设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),...

设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流x万人去加强第三产业.分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(0<x<100).而分流出的从事第三产业的人员,平均每人每年可创造产值0.8a万元.
(1)若要保证第二产业的产值不减少,求x的取值范围;
(2)在(1)的条件下,问分流出多少人,才能使该市第二、三产业的总产值增加最多?
(1)设分流后从事服务性行业的人数为x,根据要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业的全年总产值的一半,可列不等式组求解. (2)构建函数f(x)=(100-x)(1+2x%)a-100a+0.8ax,再利用二次函数的方法求最值. 【解析】 (1)由题意,得…(3分) =…(6分) (2)该市第二、三产业的总产值增加f(x)(0<x≤50),则 f(x)=(100-x)(1+2x%)a-100a+0.8ax== ∴x=45时,f(x)max=40.5a…(10分) 即应分流出45万人才能使该市第二、三企业的总产值增加最多.…(13分)
复制答案
考点分析:
相关试题推荐
已知定义在区间(-1、1)上的函数manfen5.com 满分网为奇函数.且manfen5.com 满分网
(1)、求实数m、n的值.
(2)、解关于 t 的不等式f(t-1)+f(t-2)<0.
查看答案
已知p:|x-2|>1;q:x2-(2a+5)x+a(a+5)≤0若¬p是q的充分不必要条件,求实数a的取值范围.
查看答案
对于定义在[a,b]上的两个函数f(x)与g(x),如果对于任意x∈[a,b],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是接近的.若函数y=x2-4x+2与函数y=4x+m在区间[3,5]上是接近的,则实数m的取值范围是    查看答案
若函数manfen5.com 满分网在区间(t,t+3)上是单调函数,则t的取值范围是    查看答案
不等式log2(1-x)≤3的解集是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.