满分5 > 高中数学试题 >

设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题...

设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
A.M中所有直线均经过一个定点
B.存在定点P不在M中的任一条直线上
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上
D.M中的直线所能围成的正三角形面积都相等
其中真命题的代号是    (写出所有真命题的代号).
验证发现,直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π)表示圆x2+(y-2)2=1的切线的集合, A.M中所有直线均经过一个定点,验证直线方程是否能化为为l1+λl2形式, B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标. C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断, D.M中的直线所能围成的正三角形面积都相等,由直线系的几何意义可判断 【解析】 验证发现,直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π)表示圆x2+(y-2)2=1的切线的集合, A.M中所有直线均经过一个定点,由于本题中的直线不能转化为l1+λl2形式,故不可能过一个定点 B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确; C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由于圆的所有外切正多边形的边都是圆的切线,故C正确; D.M中的直线所能围成的正三角形面积都相等,由直线系的几何意义知,这些线所围成的正三角形都有一个共同的内切圆x2+(y-2)2=1,所以面积大小一定相等,故本命题正确. 故答案为:BCD
复制答案
考点分析:
相关试题推荐
在△ABC中,manfen5.com 满分网,△ABC的面积manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网夹角的取值范围是    查看答案
设{an}是等差数列,从{a1,a2,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列的个数最多有    个. 查看答案
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.则f(n)的表达式为   
manfen5.com 满分网 查看答案
由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为    查看答案
已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的体积为   
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.