满分5 > 高中数学试题 >

已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其...

已知定义在正实数集上的函数f(x)=manfen5.com 满分网x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(Ⅰ)用a表示b,并求b的最大值;
(Ⅱ)求证:f(x)≥g(x)  (x>0).
(Ⅰ)设出两曲线的公共点坐标,分别求出f(x)和g(x)的导函数,把设出点的坐标代入两导函数中得到两关系式,联立两关系式即可解出公共点的横坐标,把求出的横坐标代入得到用a表示出b的式子,设h(t)等于表示出的式子,求出h(t)的导函数,令导函数大于0求出t的范围即为函数的增区间,令导函数小于0求出x的范围即为函数的减区间,根据函数的增减性即可求出h(t)的最大值即为b的最大值; (Ⅱ)设F(x)=f(x)-g(x),求出F(x)的导函数,根据导函数的正负得到F(x)的单调区间,由x大于0和函数的增减性得到F(x)的最小值为0,即f(x)-g(x)大于等于0,得证. 【解析】 (Ⅰ)设y=f(x)与y=g(x)(x>0)在公共点(x,y)处的切线相同. ∵f'(x)=x+2a,,由题意f(x)=g(x),f'(x)=g'(x). 即由得:x=a,或x=-3a(舍去). 即有. 令,则h'(t)=2t(1-3lnt). 于是当t(1-3lnt)>0,即时,h'(t)>0;当t(1-3lnt)<0,即时,h'(t)<0. 故h(t)在为增函数,在为减函数, 于是h(t)在(0,+∞)的最大值为. (Ⅱ)设, 则F'(x)=. 故F(x)在(0,a)为减函数,在(a,+∞)为增函数, 于是函数F(x)在(0,+∞)上的最小值是F(a)=F(x)=f(x)-g(x)=0. 故当x>0时,有f(x)-g(x)≥0,即当x>0时,f(x)≥g(x).
复制答案
考点分析:
相关试题推荐
已知直线y=ax+1与双曲线3x2-y2=1交于A、B两点,
(1)若以AB线段为直径的圆过坐标原点,求实数a的值.
(2)是否存在这样的实数a,使A、B两点关于直线manfen5.com 满分网对称?说明理由.
查看答案
已知抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a,b值,并求S的最大值.
查看答案
manfen5.com 满分网如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm.
(1)按下列要求建立函数关系式:
(i)设∠BAO=θ(rad),将y表示成θ的函数;
(ii)设OP=x(km),将y表示成x的函数;
(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短.
查看答案
已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f'(x)+6x的图象的对称轴为y轴
(I)求函数y=f(x)的解析式及它的单调递减区间
(II)若函数y=f(x)的极小值在区间(a-1,a+1)内,求a的取值范围.
查看答案
已知manfen5.com 满分网展开式中各项的系数之和比各项的二项式系数之和大992.
(Ⅰ)求展开式中二项式系数最大的项;    (Ⅱ)求展开式中系数最大的项.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.