先求导函数,根据当x=-1时,f(x)有极大值,当x=3时,f(x)有极小值,可知-1,3是方程f'(x)=0的根,从而可得到关于a,b的两个等式,再根据极大值等于7,又得到一个关于a,b,c的等式,即可求出c的值.因为函数在x=3处有极小值,所以把x=3代入原函数,求出的函数值即为函数的极小值.
【解析】
∵f(x)=x3+ax2+bx+c,∴f'(x)=3x2+2ax+b.
∵当x=-1时,函数取得极大值,x=3时,函数取得极小值.
∴-1,3是方程f'(x)=0的根,即-1,3为方程3x2+2ax+b=0的两根.
∴∴,
∴f(x)=x3-3x2-9x+c.
∵当x=-1时取得极大值7,
∴(-1)3-3(-1)2-9(-1)+c=7,
∴c=2.
∴函数f(x)的极小值为f(3)=33-3×32-9×3+2=-25.