a1=1,a2=2,a n+2=a n+1-an(n∈N*),求出a3=a2-a1=2-1=1,a4=a4-a2=1-2=-1,a5=a4-a3=-1-1=-2,a6=a5-a4=-2+1=-1,a7=a6-a5=-1+2=1,a8=a7-a6=1-(-1)=2,由此可知这是一个周期为6的数列,从而能够求出a2011.
【解析】
∵a1=1,a2=2,a n+2=a n+1-an(n∈N*),
∴a3=a2-a1=2-1=1,
a4=a4-a2=1-2=-1,
a5=a4-a3=-1-1=-2,
a6=a5-a4=-2+1=-1,
a7=a6-a5=-1+2=1,
a8=a7-a6=1-(-1)=2,
…
这是一个周期为6的数列,
∵2011÷6=335…1
∴a2011=a1=1.
故选A.