满分5 > 高中数学试题 >

已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn...

已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是( )
A.21
B.20
C.19
D.18
写出前n项和的函数解析式,再求此式的最值是最直观的思路,但注意n取正整数这一条件. 【解析】 设{an}的公差为d,由题意得 a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,① a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,② 由①②联立得a1=39,d=-2, ∴sn=39n+×(-2)=-n2+40n=-(n-20)2+400, 故当n=20时,Sn达到最大值400. 故选B.
复制答案
考点分析:
相关试题推荐
已知-1,a1,a2,8成等差数列,-1,b1,b2,b3,-4成等比数列,那么manfen5.com 满分网的值为( )
A.-5
B.5
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
设A是△ABC的最小角,且manfen5.com 满分网,则实数m的取值范围是( )
A.m≥3
B.m>-1
C.-1<m≤3
D.m>0
查看答案
manfen5.com 满分网则△ABC为( )
A.等边三角形
B.等腰三角形
C.有一个内角为30°的直角三角形
D.有一个内角为30°的等腰三角形
查看答案
附加题:甲、乙两人各拿出200元,用作掷币游戏的奖金,两人商定:一局中掷出正面则甲胜,否则乙胜,谁先胜三局就得所有的400元.比赛开始后,甲胜了两局,乙胜了一局,这时因为意外事件中断游戏,以后他们不想再继续这场游戏,请问怎样分配这400元才合理?
查看答案
为了了解某地区高二年级男生的身高情况,从该地区中的一所高级中学里选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:
分组151.5~158.5158.5~165.5165.5~172.5172.5~179.5
频数621m
频率a0.1
(1)求出表中a,m的值;
(2)画出频率分布直方图和频率折线图.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.