(1)通过证明A1C1⊥BB1,A1C1⊥D1B1,D1B1∩BB1=B 1,即可证明A1C1⊥平面BB1D1D.然后证明平面A1B1C1⊥平面BB1D1D;
(2)三棱锥B1-A1C1B的体积转化为求解即可;
(3)通过A1A∥B1B说明异面直线BC1与AA1所成角就是∠BB1C1,然后求解即可.
证:(1)正方体ABCD-A1B1C1D1中,BB1⊥平面A1B1C1D1,
∵A1C1⊂平面-A1B1C1D1,∴BB1⊥A1C1即A1C1⊥BB1,
又∵A1C1⊥D1B1,D1B1∩BB1=B 1,∴A1C1⊥平面BB1D1D,
∵A1C1⊂平面A1B1C1,平面A1B1C1⊥平面BB1D1D.
(2)三棱锥B1-A1C1B的体积转化为:,
==.
(3)∵A1A∥B1B,∴∠BB1C1就是异面直线BC1与AA1所成角.
易知△BB1C1为等腰三角形,∴∠BB1C1=45°.
即异面直线BC1与AA1所成角的大小为45°.