满分5 > 高中数学试题 >

已知抛物线C的顶点在原点,焦点为F(0,1). (Ⅰ)求抛物线C的方程; (Ⅱ)...

已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(Ⅰ)设抛物线C的方程是x2=ay,根据焦点为F的坐标求得a,进而可得抛物线的方程. (Ⅱ)设P(x1,y1),Q(x2,y2),进而可得抛物线C在点P处的切线方程和直线PQ的方程,代入抛物线方程根据韦达定理,可求得x1+x2和x1x2的表达式,根据×求得y1=4及点P的坐标. 【解析】 (Ⅰ)设抛物线C的方程是x2=ay, 则, 即a=4. 故所求抛物线C的方程为x2=4y. (Ⅱ)【解析】 设P(x1,y1),Q(x2,y2), 则抛物线C在点P处的切线方程是, 直线PQ的方程是. 将上式代入抛物线C的方程,得, 故x1+x2=,x1x2=-8-4y1, 所以x2=-x1,y2=+y1+4. 而=(x1,y1-1),=(x2,y2-1),×=x1x2+(y1-1)(y2-1) =x1x2+y1y2-(y1+y2)+1 =-4(2+y1)+y1(+y1+4)-(+2y1+4)+1 =y12-2y1--7 =(y12+2y1+1)-4(+y1+2) =(y1+1)2- ==0, 故y1=4,此时,点P的坐标是(±4,4). 经检验,符合题意. 所以,满足条件的点P存在,其坐标为P(±4,4).
复制答案
考点分析:
相关试题推荐
如图,在三棱锥P-ABC中,manfen5.com 满分网,O,E,F分别是AC,PC,BC的中点,且OP⊥平面ABC.
(1)求证:OE∥平面PAB;
(2)求证:BC⊥平面PFO;
(3)设直线OE与平面PBC所成角为α,求sinα.

manfen5.com 满分网 查看答案
已知a,b,c∈(0,1).
(1)若manfen5.com 满分网
(2)求证:(1-a)b,(1-b)c,(1-c)a三数中至少有一个小于或等于manfen5.com 满分网
查看答案
已知定点Q(0,5)和圆C:(x+2)2+(y-6)2=42
(1)若直线l过Q点且被圆C截得的线段长为manfen5.com 满分网,求直线l的方程;
(2)求过Q点的圆C的弦的中点P的轨迹方程,并指出其轨迹是什么?
查看答案
如图,正方体ABCD-A1B1C1D1的棱长为1.
(1)求证:平面A1B1C1⊥平面BB1D1D;
(2)求三棱锥B1-A1C1B的体积;
(3)求异面直线BC1与AA1所成角的大小.

manfen5.com 满分网 查看答案
如图数表满足:(1)第n(n>1)行首尾两数均为n,第一行为一个数1;(2)表中的递推关系:从第三行起的非首尾两数中的每一个数等于其上一行中它的“肩膀上”的两个数的和.现记第n(n>1)行第2个数为an,如a2=2,a3=4,a4=7,a5=11…,则可以得到递推关系:an=    ,由此通过有关求解可以求得:manfen5.com 满分网=    (用数字填写)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.