满分5 > 高中数学试题 >

命题“若x2<1,则-1<x<1”的逆否命题是( ) A.若x2≥1,则x≥1或...

命题“若x2<1,则-1<x<1”的逆否命题是( )
A.若x2≥1,则x≥1或x≤-1
B.若-1<x<1,则x2<1
C.若x>1或x<-1,则x2>1
D.若x≥1或x≤-1,则x2≥1
根据逆否命题的定义,直接写出答案即可,要注意“且”形式的命题的否定. 【解析】 原命题的条件是““若x2<1”,结论为“-1<x<1”, 则其逆否命题是:若x≥1或x≤-1,则x2≥1. 故选D.
复制答案
考点分析:
相关试题推荐
下列叙述错误的是( )
A.若事件A发生的概率为P(A),则0≤P(A)≤1
B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件
C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲抽到有奖奖券的可能性相同
D.某事件发生的概率是随着试验次数的变化而变化的
查看答案
已知直线l:mx-2y+2m=0(m∈R)和椭圆C:manfen5.com 满分网(a>b>0),椭圆C的离心率为manfen5.com 满分网,连接椭圆的四个顶点形成四边形的面积为2manfen5.com 满分网
(I)求椭圆C的方程;
(II)设直线l经过的定点为Q,过点Q作斜率为k的直线l′与椭圆C有两个不同的交点,求实数k的取值范围;
(Ⅲ)设直线l与y轴的交点为P,M为椭圆C上的动点,线段PM长度的最大值为f(m),求f(m)的表达式.
查看答案
已知函数f(x)=x3-3ax2+2ax+1(a∈R).
(I)当manfen5.com 满分网时,求函数f(x)的单调递减区间;
(Ⅱ) 当a>0时,设函数g(x)=f(x)+3-2ax,若x∈[1,2]时,g(x)>0恒成立,求a的取值范围.
查看答案
如图,平面EAD⊥平面ABFD,△AED为正三角形,四边形ABFD为直角梯形,且∠BAD=90°,AB∥DF,AD=a,AB=manfen5.com 满分网a,DF=manfen5.com 满分网. 
(I)求证:EF⊥FB;
(II)求直线EB和平面ABFD所成的角.

manfen5.com 满分网 查看答案
已知点N(manfen5.com 满分网,0),以N为圆心的圆与直线l1:y=x和l2:y=-x都相切.
(Ⅰ)求圆N的方程;
(Ⅱ)设l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1),试判断直线l与圆N的位置关系,并说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.