(Ⅰ)当b=2时,由题设条件知an+1=2an+2n.由此可知an+1-(n+1)•2n=2an+2n-(n+1)•2n=2(an-n•2n-1),所以{an-n•2n-1}是首项为1,公比为2的等比数列.
(Ⅱ)当b=2时,由题设条件知an=(n+1)2n-1;当b≠2时,由题意得=,由此能够导出{an}的通项公式.
【解析】
由题意知a1=2,且ban-2n=(b-1)Snban+1-2n+1=(b-1)Sn+1
两式相减得b(an+1-an)-2n=(b-1)an+1
即an+1=ban+2n①
(Ⅰ)当b=2时,由①知an+1=2an+2n
于是an+1-(n+1)•2n=2an+2n-(n+1)•2n=2(an-n•2n-1)
又a1-1•2=1≠0,所以{an-n•2n-1}是首项为1,公比为2的等比数列.
(Ⅱ)当b=2时,由(Ⅰ)知an-n•2n-1=2n-1,即an=(n+1)2n-1
当b≠2时,由①得==
因此=
即
所以