满分5 > 高中数学试题 >

设函数. (1)求函数f(x)的单调区间、极值. (2)若当x∈[a+1,a+2...

设函数manfen5.com 满分网
(1)求函数f(x)的单调区间、极值.
(2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围.
(1)对函数f(x)进行求导,根据导数大于0时原函数单调递增,导函数小于0时原函数单调递减可求单调区间进而求出极值点. (2)将(1)中所求的导函数f'(x)代入|f'(x)|≤a得到不等关系式,再由函数f'(x)的单调性求出最值可得解. 【解析】 f'(x)=-x2+4ax-3a2.令f'(x)=-x2+4ax-3a2=0,得x=a或x=3a由表 可知:当x∈(-∞,a)时,函数f(x)为减函数,当x∈(3a,+∞)时.函数f(x)也为减函数; 当x∈(a,3a)时,函数f(x)为增函数. 当x=a时,f(x)的极小值为时,f(x)的极大值为b. (2)由|f'(x)|≤a,得-a≤-x2+4ax-3a2≤a. ∵0<a<1,∴a+1>2a,f'(x)=-x2+4ax-3a2在[a+1,a+2]上为减函数. ∴[f'(x)]max=f'(a+1)=2a-1,[f'(x)]min=f'(a+2)=4a-4. 于是,问题转化为求不等式组的解.解得.又0<a<1,∴.
复制答案
考点分析:
相关试题推荐
工厂生产某种产品,次品率p与日产量x(万件)间的关系为P=manfen5.com 满分网(c为常数,且0<c<6),已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.
(1)将日盈利额y(万元)表示为日产量x(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=manfen5.com 满分网
查看答案
已知向量manfen5.com 满分网=(sin(x+manfen5.com 满分网),sinx),manfen5.com 满分网=(cosx,-sinx),函数f(x)=m,(m为正实数).
(1)求函数f(x)的最小正周期及单调递减区间;
(2)将函数f(x)的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移manfen5.com 满分网个单位得到y=g(x)的图象,试探讨:当x⊆[0,π]时,函数y=g(x)与y=1的图象的交点个数.
查看答案
设命题p:|4a-7|<1;命题q:函f(x)=x2-4x+3在[0,a]上的值域为[-1,3],若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案
在锐角△ABC中,角A、B、C的对边分别为a、b、c,若manfen5.com 满分网+manfen5.com 满分网=6cosC,则manfen5.com 满分网+manfen5.com 满分网的值是    查看答案
对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);②f=f(x1)+f(x2);
③(x1-x2)[f(x1)-f(x2)]<0;④manfen5.com 满分网
当f(x)=2-x时,上述结论中正确结论的序号是    写出全部正确结论的序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.