满分5 >
高中数学试题 >
抛物线x2=-8y的准线方程是( ) A.y=2 B. C. D.y=-2
抛物线x
2=-8y的准线方程是( )
A.y=2
B.
C.
D.y=-2
考点分析:
相关试题推荐
若存在常数k和b,使得函数f(x)和g(x)在它们的公共定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x
2,g(x)=2elnx.
(I)求F(x)=f(x)-g(x)的极值;
(II)函数f(x)和g(x)是否存在隔离直线?若存在,求出此隔离直线的方程,若不存在,请说明理由.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,向量
=(1,λsinA),
=(sinA,1+cosA).已知
∥
.
(1)若λ=2,求角A的大小;
(2)若b+c=
a,求λ的取值范围.
查看答案
设函数
.
(1)求函数f(x)的单调区间、极值.
(2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围.
查看答案
工厂生产某种产品,次品率p与日产量x(万件)间的关系为P=
(c为常数,且0<c<6),已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.
(1)将日盈利额y(万元)表示为日产量x(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=
)
查看答案
已知向量
=(sin(x+
),sinx),
=(cosx,-sinx),函数f(x)=m,(m为正实数).
(1)求函数f(x)的最小正周期及单调递减区间;
(2)将函数f(x)的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移
个单位得到y=g(x)的图象,试探讨:当x⊆[0,π]时,函数y=g(x)与y=1的图象的交点个数.
查看答案