满分5 > 高中数学试题 >

已知函数 (I)当0<a<b,且f(a)=f(b)时,求的值; (II)是否存在...

已知函数manfen5.com 满分网
(I)当0<a<b,且f(a)=f(b)时,求manfen5.com 满分网的值;
(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(I)由f(x)在(0,1)上为减函数,在(1,+∞)上是增函数.0<a<b,且f(a)=f(b),推得0<a<1<b,   从而分别求得f(a),f(b),根据其关系得到结论. (II)先假设存在满足条件的实数a,b,由于f(x)是分段函数,则分当a,b∈(0,1)2时,a,b∈[1,+∞)    a∈(0,1),b∈[1,+∞)时三种情况分析. 【解析】 (I)∵ ∴f(x)在(0,1)上为减函数,在(1,+∞)上是增函数. 由0<a<b,且f(a)=f(b),可得0<a<1<b且.所以. (II)不存在满足条件的实数a,b. 若存在满足条件的实数a,b,则0<a<b 当a,b∈(0,1)时,在(0,1)上为减函数. 故即解得a=b. 故此时不存在适合条件的实数a,b. 当a,b∈[1,+∞)时,在(1,+∞)上是增函数. 故即 此时a,b是方程x2-x+1=0的根,此方程无实根. 故此时不存在适合条件的实数a,b. 当a∈(0,1),b∈[1,+∞)时,由于1∈[a,b],而f(1)=0∉[a,b], 故此时不存在适合条件的实数a,b. 综上可知,不存在适合条件的实数a,b.
复制答案
考点分析:
相关试题推荐
已知函f(x)=1-2ax-a2x(a>1)
(1)求函f(x)的值域;
(2)若x∈[-2,1]时,函f(x)的最小值-7,求a的值和函f(x)的最大值.
查看答案
已知f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,manfen5.com 满分网
(1)证明函数f(x)在(0,1)是增函数
(2)求f(x)在(-1,1)上的解析式.
查看答案
已知奇函数manfen5.com 满分网
(1)求实数m的值,并在给出的直角坐标系中画出y=f(x)的图象.
(2)若函数f(x)在区间[-1,|a|-2]上单调递增,试确定a的取值范围.
查看答案
设函数f(x)=log2(ax-bx),且f(1)=1,f(2)=log212.
(1)求a,b的值;
(2)当x∈[1,2]时,求f(x)最大值.
查看答案
计算:
(1)manfen5.com 满分网   
(2)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.