已知a>0且a≠1,
.
(1)判断f(x)的奇偶性并加以证明;
(2)判断f(x)的单调性并用定义加以证明;
(3)当f(x)的定义域为(-1,1)时,解关于m的不等式f(1-m)+f(1-m
2)<0.
考点分析:
相关试题推荐
某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如表:
运输工具 | 途中速度(km/h) | 途中费用(元/km) | 装卸时间(h) | 装卸费用(元) |
汽车 | 50 | 8 | 2 | 1000 |
火车 | 100 | 4 | 4 | 2000 |
若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A、B两地距离为xkm
(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x);
(2)试根据A、B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).
(注:总费用=途中费用+装卸费用+损耗费用)
查看答案
已知函数f(x)=x
2+2ax+2,x∈[-5,5],
(1)当a=1时,求f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.
查看答案
已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),画出函数f(x)的图象,并求出函数f(x)的解析式.
查看答案
已知集合A={x|3≤x<7},B={x|2<x<10},C={x|5-a<x<a}.
(1)求A∪B,(∁
RA)∩B;
(2)若C⊆(A∪B),求a的取值范围.
查看答案
求下列函数的定义域:
(1)
(2)
.
查看答案