(1)欲证数列{an-2n}为等比数列,只需证得an+1-2(n+1)=2(an-2n),根据等式an+1=2(an-n+1)变形可得结论;
(2)根据(1)先求出an,从而求出Sn,然后代入不等式Sn≥an+2n2,从而求出正整数n的最小值.
(1)证明:∵an+1=2(an-n+1)
∴an+1-2(n+1)=2(an-2n)
∴{an-2n} 为等比数列;
(2)【解析】
由(1)知,
an-2n=2n
∴an=2n+2n
∴Sn=2n+1+n2+n-2
由Sn≥an+2n2
可得2n+1+n2+n-2≥2n+2n+2n2,
∴2n≥n2+n+2
∴正整数n的最小值为5.