满分5 > 高中数学试题 >

已知圆C方程为:x2+y2=4. (Ⅰ)直线l过点P(1,2),且与圆C交于A、...

已知圆C方程为:x2+y2=4.
(Ⅰ)直线l过点P(1,2),且与圆C交于A、B两点,若manfen5.com 满分网,求直线l的方程;
(Ⅱ)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量manfen5.com 满分网,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
(I)分类讨论:①当直线l垂直于x轴时;②若直线l不垂直于x轴.对于②,设其方程为y-2=k(x-1),结合直线与圆的位置关系利用弦长公式即可求得k值,从而解决问题. (II)设点M的坐标为(x,y)(y≠0),Q点坐标为(x,y),利用向量的坐标运算表示出M的坐标,再利用M点在圆上其坐标适合方程即可求得动点Q的轨迹方程,最后利用方程的形式进行判断是什么曲线即可. 解(Ⅰ)①当直线l垂直于x轴时, 则此时直线方程为x=1,l与圆的两个交点坐标为和, 其距离为满足题意(1分) ②若直线l不垂直于x轴,设其方程为y-2=k(x-1),即kx-y-k+2=0 设圆心到此直线的距离为d,则,得d=1(3分) ∴,, 故所求直线方程为3x-4y+5=0 综上所述,所求直线为3x-4y+5=0或x=1(7分) (Ⅱ)设点M的坐标为(x,y)(y≠0),Q点坐标为(x,y) 则N点坐标是(0,y)(9分) ∵, ∴(x,y)=(x,2y)即x=x,(11分) 又∵x2+y2=4,∴ ∴Q点的轨迹方程是,(13分) 轨迹是一个焦点在y轴上的椭圆,除去长轴端点.(14分)
复制答案
考点分析:
相关试题推荐
如图,在四棱锥S-ABCD中,SA=AB=2,SB=SD=2manfen5.com 满分网,底面ABCD是菱形,且∠ABC=60°,E为CD的中点.
(1)求四棱锥S-ABCD的体积;
(2)证明:CD⊥平面SAE;
(3)侧棱SB上是否存在F,使得CF∥平面SAE?并证明你的结论.

manfen5.com 满分网 查看答案
设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比.一天购票人数为25人时,该旅游景点收支平衡;一天购票人数超过100人时,该旅游景点需另交保险费200元.设每天的购票人数为x人,赢利额为y元.
(1)求y与x之间的函数关系;
(2)该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?注:①利润=门票收入-固定成本-变动成本;
②可选用数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
从1、2、3、4、5、8、9这7个数中任取三个数,共有35种不同的取法(两种取法不同,指的是一种取法中至少有一个数与另一种取法中的三个数都不相同).
(Ⅰ)求取出的三个数能够组成等比数列的概率;
(Ⅱ)求取出的三个数的乘积能被2整除的概率.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求tanA的值;
(Ⅱ)求函数manfen5.com 满分网的值域.
查看答案
如图,已知PA、PB是圆O的切线,A、B分别为切点,C为圆O上不与A、B重合的另一点,若∠ACB=120°,则∠APB=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.