满分5 > 高中数学试题 >

函数f(x)=是定义在(-1,1)的奇函数,且f()=. (1)确定f(x)的解...

函数f(x)=manfen5.com 满分网是定义在(-1,1)的奇函数,且f(manfen5.com 满分网)=manfen5.com 满分网
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.
(1)若奇函数在x=0处有定义,则f(0)=0,代入即可得b,再由f()=代入即可得a值 (2)因为函数为奇函数,故只需判断x>0时函数的单调性即可,利用单调性定义即可证明 (3)利用函数的单调性和奇偶性将不等式中的f脱去,等价转化为关于t的不等式组,解之即可 【解析】 (1)∵函数f(x)=是定义在(-1,1)的奇函数 ∴f(0)=0,即得b=0 ∵f()=. ∴,即得a=1 ∴f(x)= (2)设任意x1,x2∈(0,1),且x1<x2 则f(x1)-f(x2)=- = =<0 即f(x1)<f(x2) ∴函数f(x)在(0,1)上为增函数 ∵函数f(x)是定义在(-1,1)的奇函数 ∴函数f(x)在(-1,1)上为增函数 (3)不等式f(t-1)+f(t)<0 ⇔f(t-1)<-f(t) ⇔f(t-1)<f(-t)  (根据奇函数的性质) ⇔  (根据定义域和单调性) ⇔0<t<
复制答案
考点分析:
相关试题推荐
《中华人民共和国个人所得税》规定,公民全月工资所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:
全月应纳税所得额税率(%)
不超过500元的部分5
超过500元至2000元的部分10
超过2000元的部分15
(1)求某人当月所交税款y元关于其当月工资x元的函数;
(2)若某人某月所交税款为26.78元,求当月的工资;
(3)若某人当月的工资收入在3000元至6000元之间,求该月所交税款的范围.
查看答案
已知幂函数y=f(x)的图象经过点(2,4),对于偶函数y=g(x)(x∈R),当x≥0时,g(x)=f(x)-2x.
(1)求函数y=f(x)的解析式;
(2)求当x<0时,函数y=g(x)的解析式,并在给  定坐标系下,画出函数y=g(x)的图象;
(3)写出函数y=|g(x)|的单调递减区间.

manfen5.com 满分网 查看答案
已知集合A={x|3≤x<7},B={x|x2-12x+20<0},C={x|x<a}.
(1)求A∪B;(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范围.
查看答案
给出下列四个命题:
①已知manfen5.com 满分网,则函数g(x)=f(2x)在(0,1)上有唯一零点;
②对于函数manfen5.com 满分网的定义域中任意的x1、x2(x1≠x2)必有manfen5.com 满分网
③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),则必有0<f(b)<1;
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0.则函数f(x)、g(x)都是奇函数.
其中正确命题的序号是    查看答案
函数manfen5.com 满分网(a>0且a≠1)是(-∞,+∞)上的减函数,则a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.