满分5 > 高中数学试题 >

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2...

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
(1)本题由条件Sn+1+Sn-1=2Sn+1,借助项与和关系Sn-Sn-1=an,可确定数列为等差数列,进而求出数列{an}的通项公式an=n+1. (2)由an通项写出bn的通项,欲证明数列为递增数列,可借助作差法证明bn+1-bn>0即可,进行整理变形即转化为对(-1)n-1λ<2n-1(n∈N*)恒成立的证明.借此讨论N的奇数偶数两种情况就可求出λ的范围,再综合λ为非零的整数即可确定λ的具体取值. 【解析】 (1)由已知,(Sn+1-Sn)-(Sn-Sn-1)=1(n≥2,n∈N*), 即an+1-an=1(n≥2,n∈N*),且a2-a1=1. ∴数列{an}是以a1=2为首项,公差为1的等差数列. ∴an=n+1. (2)∵an=n+1, ∴bn=4n+(-1)n-1λ•2n+1,要使bn+1>bn恒成立, ∴bn+1-bn=4n+1-4n+(-1)nλ•2n+2-(-1)n-1λ•2n+1>0恒成立, ∴3•4n-3λ•(-1)n-12n+1>0恒成立, ∴(-1)n-1λ<2n-1恒成立. (ⅰ)当n为奇数时,即λ<2n-1恒成立, 当且仅当n=1时,2n-1有最小值为1, ∴λ<1. (ⅱ)当n为偶数时,即λ>-2n-1恒成立, 当且仅当n=2时,-2n-1有最大值-2, ∴λ>-2. 即-2<λ<1,又λ为非零整数,则λ=-1. 综上所述,存在λ=-1,使得对任意n∈N*,都有bn+1>bn.
复制答案
考点分析:
相关试题推荐
已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且它们的斜率之积-manfen5.com 满分网
(1)求点M轨迹C的方程;
(2)若过点D(2,0)的直线l与(1)中的轨迹C交于不同的两点D、F(E在D、F之间),试求△ODE与△ODF面积之比的取值范围(O为坐标原点).
查看答案
设函数f(x)=2ln(x-1)-(x-1)2
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)+x2-3x-a=0在区间[2,4]内恰有两个相异的实根,求实数a的取值范围.
查看答案
manfen5.com 满分网如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.
(1)求证:PA⊥EF;
(2)求二面角D-FG-E的余弦值.
查看答案
已知射手甲射击一次,击中目标的概率是manfen5.com 满分网
(1)求甲射击5次,恰有3次击中目标的概率;
(2)假设甲连续2次未击中目标,则中止其射击,求甲恰好射击5次后,被中止射击的概率.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2、c=3,cosB=manfen5.com 满分网.   
(1)求b的值;    
(2)求sinC的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.