满分5 > 高中数学试题 >

已知函数f(x)=(2-a)lnx++2ax(a∈R). (Ⅰ)当a=0时,求f...

已知函数f(x)=(2-a)lnx+manfen5.com 满分网+2ax(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,求f(x)单调区间;
(Ⅲ)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.
(Ⅰ)当a=0时,f(x)=2lnx+,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值; (Ⅱ)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间; (Ⅲ)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围. 【解析】 (Ⅰ)依题意知f(x)的定义域为(0,+∞) 当a=0时,f(x)=2lnx+,f′(x)=-= 令f′(x)=0,解得x=当0<x<时,f′(x)<0; 当x≥时,f′(x)>0 又∵f()=2-ln2 ∴f(x)的极小值为2-2ln2,无极大值 (Ⅱ)f′(x)=-+2a= 当a<-2时,-<,令f′(x)<0,得0<x<-或x>, 令f′(x)>0得-<x< 当-2<a<0时,得->,令f′(x)<0得0<x<或x>-; 令f′(x)>0得<x<-; 当a=-2时,f′(x)=-≤0 综上所述,当a<-2时f(x),的递减区间为(0,-)和(.+∞),递增区间为(-,); 当a=-2时,f(x)在(0,+∞)单调递减; 当-2<a<0时,f(x)的递减区间为(0,)和(-,+∞),递增区间为(,-). (Ⅲ)由(Ⅱ)可知,当a∈(-3,-2)时,f(x)在区间[1,3]上单调递减. 当x=1时,f(x)取最大值;当x=3时,f(x)取最小值; |f(x1)-f(x2)|≤f(1)-f(3)=(1+2a)-[(2-a)ln3++6a]=-4a+(a-2)ln3 ∵(m+ln3)a-ln3>|f(x1)-f(x2)|恒成立,∴(m+ln3)a-2ln3>-4a+(a-2)ln3 整理得ma>-4a,∵a<0,∴m<-4恒成立,∵-3<a<-2, ∴-<-4<-,∴m≤-
复制答案
考点分析:
相关试题推荐
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)证明:BN⊥平面C1B1N;
(Ⅱ)设直线C1N与平面CNB1所成的角为θ,求cosθ的值;
(Ⅲ)M为AB中点,在CB上是否存在一点P,使得MP∥平面CNB1,若存在,求出BP的长;若不存在,请说明理由.
manfen5.com 满分网
查看答案
某航模兴趣小组的同学,为了测出在湖面上航模航行速度,采用如下办法,在岸边设置两个观测点A、B,且AB=80米,当航模在C处时,测得∠ABC=105°及∠BAC=30°,经过20秒钟后,航模直线航行到D处,此时测得∠BAD=90°和∠ABD=45°,试根据以上条件求出航模速度(结果保留根号)

manfen5.com 满分网 查看答案
已知manfen5.com 满分网,且函数manfen5.com 满分网
(1)求f(x)的增区间;  
(2)求f(x)在区间manfen5.com 满分网上的最大、最小值及相应的x值;
(3)求函数f(x)的图象关于直线x=π对称图象的对称中心和对称轴方程.
查看答案
已知函数manfen5.com 满分网
(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数; 
(3)在(2)条件下,解不等式:manfen5.com 满分网
查看答案
已知manfen5.com 满分网,若¬q是¬p的必要而不充分条件,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.