满分5 > 高中数学试题 >

设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1).等比数列{bn}...

设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1).等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5
(1)求数列{an}的通项公式;
(2)设数列{manfen5.com 满分网}的前n项和为Mn,求证:manfen5.com 满分网≤Mnmanfen5.com 满分网
(1)根据T5=T3+2b5 ,求得 b4=b5,得到公比 a1==1,再由当n≥2时,an=sn-sn-1 可得数列{an}是以1为首项,以4为公差的等差数列,由此求得数列{an}的通项公式. (2)用裂项法求得 Mn =(1-)<,再由数列{ Mn }是增数列,可得 Mn≤M1=,从而命题得证. 【解析】 (1)∵等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5 ,∴b4+b5=2b5, ∴b4=b5,∴公比 a1==1,故等比数列{bn}是常数数列. 数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),当n≥2时, an=sn-sn-1=nan-2n(n-1)-[nan-1-2(n-1)(n-2)],∴an-an-1=4 (n≥2). ∴数列{an}是以1为首项,以4为公差的等差数列,an=4n-3. (2)∵数列{}的前n项和为Mn, ===, ∴Mn =[1-+++…+]=(1-)<. 再由数列{ Mn }是增数列,∴Mn≥M1=. 综上可得,≤Mn<.
复制答案
考点分析:
相关试题推荐
直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,点D在AB上.
(Ⅰ)求证:AC⊥B1C;
(Ⅱ)若D是AB中点,求证:AC1∥平面B1CD;
(Ⅲ)当manfen5.com 满分网时,求二面角B-CD-B1的余弦值.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(Ⅰ)若f(x)=1,求manfen5.com 满分网的值;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足manfen5.com 满分网,求f(2B)的取值范围.
查看答案
定义方程f(x)=f'(x)的实数根x叫做函数f(x)的“新驻点”,如果函数g(x)=x,h(x)=ln(x+1),φ(x)=cosx(manfen5.com 满分网)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是    查看答案
由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是    查看答案
manfen5.com 满分网从一个棱长为1的正方体中切去一部分,得到一个几何体,其三视图如图,则该几何体的体积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.