满分5 > 高中数学试题 >

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1. (1)求f(...

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
(1)先设f(x)=ax2+bx+c,在利用f(0)=1求c,再利用两方程相等对应项系数相等求a,b即可. (2)转化为x2-3x+1-m>0在[-1,1]上恒成立问题,找其在[-1,1]上的最小值让其大于0即可. 【解析】 (1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1. 因为f(x+1)-f(x)=2x,所以a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x. 即2ax+a+b=2x,所以,∴, 所以f(x)=x2-x+1 (2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1,1]上恒成立. 设g(x)=x2-3x+1-m,其图象的对称轴为直线,所以g(x)在[-1,1]上递减. 故只需g(1)>0,即12-3×1+1-m>0, 解得m<-1.
复制答案
考点分析:
相关试题推荐
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中的真命题是    .(写出所有真命题的编号) 查看答案
设R上的偶函数f(x)满足f(x+2)+f(x)=0,且当0≤x≤1时,f(x)=x,求f(3.5)=    查看答案
manfen5.com 满分网,则m=    查看答案
已知函数y=f(x+2011)的值域是(-1,1),则函数y=f(x)的值域是    查看答案
定积分manfen5.com 满分网的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.