满分5 > 高中数学试题 >

已知a是实数,函数 (Ⅰ)求函数f(x)的单调区间; (Ⅱ)设g(a)为f(x)...

已知a是实数,函数manfen5.com 满分网
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值.
(i)写出g(a)的表达式;
(ii)求a的取值范围,使得-6≤g(a)≤-2.
(Ⅰ)求出函数的定义域[0,+∞),求出f′(x),因为a为实数,讨论a≤0,(x>0)得到f′(x)>0得到函数的单调递增区间;若a>0,令f'(x)=0,得到函数驻点讨论x取值得到函数的单调区间即可. (Ⅱ)①讨论若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0;若0<a<6,f(x)在上单调递减,在上单调递增,所以;若a≥6,f(x)在[0,2]上单调递减,所以.得到g(a)为分段函数,写出即可;②令-6≤g(a)≤-2,代到第一段上无解;若0<a<6,解得3≤a<6;若a≥6,解得.则求出a的取值范围即可. 解;(Ⅰ)【解析】 函数的定义域为[0,+∞),(x>0). 若a≤0,则f'(x)>0,f(x)有单调递增区间[0,+∞). 若a>0,令f'(x)=0,得,当时,f'(x)<0, 当时,f'(x)>0.f(x)有单调递减区间,单调递增区间. (Ⅱ)【解析】 (i)若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0. 若0<a<6,f(x)在上单调递减,在上单调递增, 所以.若a≥6,f(x)在[0,2]上单调递减, 所以. 综上所述,改天 (ii)令-6≤g(a)≤-2.若a≤0,无解.若0<a<6,解得3≤a<6. 若a≥6,解得.故a的取值范围为.
复制答案
考点分析:
相关试题推荐
某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元).
(Ⅰ)写出y与x的函数关系式;
(Ⅱ)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
查看答案
函数f(x)=ax3+bx2的图象过点M(1,4),在点M处的切线恰与直线x+9y+5=0垂直.
(1)求a,b的值;
(2)若f(x)在区间(m-1,m+1)上单调递增,求m的取值范围.
查看答案
二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
查看答案
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中的真命题是    .(写出所有真命题的编号) 查看答案
设R上的偶函数f(x)满足f(x+2)+f(x)=0,且当0≤x≤1时,f(x)=x,求f(3.5)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.