已知函数f(x)=ax
2+x-3,g(x)=-x+4lnx,h(x)=f(x)-g(x)
(1)当a=1时,求函数h(x)的极值;
(2)若函数h(x)有两个极值点,求实数a的取值范围;
(3)定义:对于函数F(x)和G(x),若存在直线ℓ:y=kx+b,使得对于函数F(x)和G(x)各自定义域内的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,则称直线ℓ:y=kx+b为函数F(x)和G(x)的“隔离直线”.则当a=1时,函数f(x)和g(x)是否存在“隔离直线”.若存在,求出所有的“隔离直线”;若不存在,请说明理由.
考点分析:
相关试题推荐
已知函数
.
(1)求f(x)的值域;
(2)设a≠0,函数
,x∈[0,2].若对任意x
1∈[0,2],总存在x
2∈[0,2],使f(x
1)-g(x
2)=0.求实数a的取值范围.
查看答案
已知a是实数,函数
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值.
(i)写出g(a)的表达式;
(ii)求a的取值范围,使得-6≤g(a)≤-2.
查看答案
某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x
2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元).
(Ⅰ)写出y与x的函数关系式;
(Ⅱ)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
查看答案
函数f(x)=ax
3+bx
2的图象过点M(1,4),在点M处的切线恰与直线x+9y+5=0垂直.
(1)求a,b的值;
(2)若f(x)在区间(m-1,m+1)上单调递增,求m的取值范围.
查看答案
二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
查看答案