由题意可得,令n=1可求a1=s1,当n≥2时,an=Sn-Sn-1,代入可求
(2)由(1)可得,==2n+1,则Sn=1•22+2•23+…+n•2n+1,利用错位相减可求和
解(1)由题意可得
∴a1=s1=4
当n≥2时,an=Sn-Sn-1=n2+3n-(n-1)2+3(n-1)=2n+2
而a1=4=2×1+2适合上式
故an=2n+2
(2)由(1)可得,==2n+1
∴Sn=1•22+2•23+…+n•2n+1
2Sn=1•23+2•24+…+(n-1)•2n+1+n•2n+2
两式相减可得,-Sn=22+23+…+2n+1-n•22+n
==2n+2-4-n•2n+2
∴Sn=(n-1)•2n+2+4