登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
在△ABC中,三内角A、B、C的对边分别为a、b、c,向量,=(cosA,sin...
在△ABC中,三内角A、B、C的对边分别为a、b、c,向量
,
=(cosA,sinA),若
,且acosB+bcosA=csinC,则A、B的大小分别是( )
A.
、
B.
、
C.
、
D.
、
由=0可得sin(-A)=0,从而求得A=.再由acosB+bcosA=csinC利用正弦定理可得sin(+B)=1,由此求得B的值. 【解析】 由题意可得=•(cosA,sinA)=-sinA=2sin(-A)=0, 再由A是三角形ABC的内角可得,0<A<π,∴-A=0,故A=. 再由acosB+bcosA=csinC可得sinA•cosB+sinBcosA=sin2C, 即 cosB+sinB=,即sin(+B)=, 故sin(+B)=1. 再由 <+B< 可得 +B=,B=. 故选C.
复制答案
考点分析:
相关试题推荐
已知直线y=kx+1与曲线y=x
3
+ax+b切于点(1,3),则b的值为( )
A.3
B.-3
C.5
D.-5
查看答案
正方体ABCD-A
1
B
1
C
1
D
1
的棱长为2,则D
1
到平面A
1
BD的距离为( )
A.
B.
C.
D.
查看答案
用a、b、c表示不同的直线,r表示平面,给出下列命题:
(1)若a∥b,b∥c,则a∥c,(2)若a⊥b,b⊥c,则a⊥c,
(3)若a∥r,b∥r,则a∥b,(4)若a⊥r,b⊥r,则a∥b,
其中真命题的序号是( )
A.(1)(2)
B.(2)(3)
C.(1)(4)
D.(3)(4)
查看答案
若函数y=cosx(0≤x≤2π)的图象与直线y=1围成一个封闭的平面图形,则这个图形的面积为( )
A.2
B.4
C.π
D.2π
查看答案
平面向量
与
的夹角为60°且
=2,
=1,则向量
+2
的模为( )
A.
B.12
C.
D.10
查看答案
试题属性
题型:选择题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.