(1)由已知C-A=和三角形的内角和定理得到A与B的关系式及A的范围,然后两边取余弦并把sinB的值代入,利用二倍角的余弦函数公式化简得到一个关于sinA的方程,求出方程的解即可得到sinA的值;
(2)要求三角形的面积,根据面积公式S△ABC=AC•BC•sinC中,AC已知,BC和sinC未知,所以要求出BC和sinC,由AC及sinA和sinB的值根据正弦定理求出BC,先根据同角三角函数间的关系由sinA求出cosA,然后由C与A的关系式表示出C,两边取正弦得到sinC与cosA相等,即可求出sinC,根据面积公式求出即可.
【解析】
(1)由C-A=和A+B+C=π,
得2A=-B,0<A<.
故cos2A=sinB,即1-2sin2A=,sinA=.
(2)由(1)得cosA=.
又由正弦定理,得,•AC=×=3.
∵C-A=,∴C=+A,
sinC=sin(+A)=cosA,
∴S△ABC=AC•BC•sinC=AC•BC•cosA
=××3×=3.