满分5 > 高中数学试题 >

设函数f(x)=x2-2tx+4t3+t2-3t+3,其中x∈R,t∈R,将f(...

设函数f(x)=x2-2tx+4t3+t2-3t+3,其中x∈R,t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)讨论g(t)在区间[-1,1]内的单调性;
(3)若当t∈[-1,1]时,|g(t)|≤k恒成立,其中k为正数,求k的取值范围.
(1)求出f′(x)=2x-2t,当x>t时和当x<t时函数的增减性即可得到f(x)的最小值为f(t)=g(t)算出即可 (2)求出g(t)=0求出函数驻点,在[-1,1]上讨论函数的单调性即可; (3)要讨论,|g(t)|≤k恒成立即g(t)的最大值≤k,求出g(t)的最大值列出不等式求出k的范围即可. 【解析】 (1)根据题意得f′(x)=2x-2t=0得x=t,当x<t时,f′(x)<0,函数为减函数;当x>t时,f′(x)>0,函数为减函数.则f(x)的最小值g(t)=f(t)=4t3-3t+3; (2)求出g′(t)=12t2-3=0解得t=, 当-1≤t<或≤t≤1时,g′(t)>0,函数为增函数; 当-≤t≤时,g′(t)<0,函数为减函数.所以函数的递增区间为[-1,-]与[,1],递减区间为[-,); (3)由(2)知g(t)的递增区间为[-1,-]与[,1],递减区间为[-,); 又g(1)=4,g(-)=4 ∴函数g(t)的最大值为4, 则g(t)≤4. ∵当t∈[-1,1]时,|g(t)|≤k恒成立, ∴k≥4
复制答案
考点分析:
相关试题推荐
设函数f(x)=manfen5.com 满分网,其中manfen5.com 满分网=(2cosx,1),manfen5.com 满分网=(cosx,manfen5.com 满分网sin2x),x∈R.
(1)求f(x)的最小正周期与单调减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=2,求A.
查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)的最小正周期和单调增区间;
(II)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
查看答案
给出下面的3个命题:
(1)函数manfen5.com 满分网的最小正周期是manfen5.com 满分网
(2)函数manfen5.com 满分网在区间manfen5.com 满分网上单调递增;
(3)manfen5.com 满分网是函数manfen5.com 满分网的图象的一条对称轴.
其中正确命题的序号是    查看答案
函数f(x)=x3+3ax2+3(a+2)x+1有极大值又有极小值,则a的范围是    查看答案
已知manfen5.com 满分网=(1,3),manfen5.com 满分网=(1,1),manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网,若manfen5.com 满分网manfen5.com 满分网的夹角是锐角,则λ的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.