满分5 > 高中数学试题 >

已知函数y=f(x)=. (1)求函数y=f(x)的图象在x=处的切线方程; (...

已知函数y=f(x)=manfen5.com 满分网
(1)求函数y=f(x)的图象在x=manfen5.com 满分网处的切线方程;
(2)求y=f(x)的最大值;
(3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值.
(1)利用导数的几何意义:导数在切点处的导数值是曲线的切线的斜率,求出切线方程. (2)令导函数为0求出根,判断根左右两边的导函数符号,判断出函数的单调性,求出函数的最值. (3)利用(2)的结论,判断出函数的最大值在e处取得;最小值在端点处取得;通过对a的分类讨论比较出两个端点值的大小,求出最小值. 【解析】 (1)∵f(x)定义域为(0,+∞),∴f′(x)= ∵f()=-e,又∵k=f′()=2e2, ∴函数y=f(x)的在x=处的切线方程为: y+e=2e2(x-),即y=2e2x-3e. (2)令f′(x)=0得x=e. ∵当x∈(0,e)时,f′(x)>0,f(x)在(0,e)上为增函数, 当x∈(e,+∞)时,f′(x)<0,则在(e,+∞)上为减函数, ∴fmax(x)=f(e)=. (3)∵a>0,由(2)知: F(x)在(0,e)上单调递增,在(e,+∞)上单调递减. ∴F(x)在[a,2a]上的最小值f(x)min=min{F(a),F(2a)}, ∵F(a)-F(2a)=ln, ∴当0<a≤2时,F(a)-F(2a)≤0,fmin(x)=F(a)=lna. 当a>2时,F(a)-F(2a)>0,f(x)min=f(2a)=ln2a.
复制答案
考点分析:
相关试题推荐
设函数f(x)=-x3+3x+2分别在x1、x2处取得极小值、极大值.xoy平面上点A、B的坐标分别为(x1,f(x1))、(x2,f(x2)),该平面上动点P满足manfen5.com 满分网,点Q是点P关于直线y=2(x-4)的对称点.求
(I)求点A、B的坐标;
(II)求动点Q的轨迹方程.
查看答案
某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为manfen5.com 满分网万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.
(Ⅰ)试写出y关于x的函数关系式;
(Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小?
查看答案
设函数f(x)=x2-2tx+4t3+t2-3t+3,其中x∈R,t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)讨论g(t)在区间[-1,1]内的单调性;
(3)若当t∈[-1,1]时,|g(t)|≤k恒成立,其中k为正数,求k的取值范围.
查看答案
设函数f(x)=manfen5.com 满分网,其中manfen5.com 满分网=(2cosx,1),manfen5.com 满分网=(cosx,manfen5.com 满分网sin2x),x∈R.
(1)求f(x)的最小正周期与单调减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=2,求A.
查看答案
已知函数manfen5.com 满分网
(I)求函数f(x)的最小正周期和单调增区间;
(II)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.