已知椭圆
经过点M(2,1),O为坐标原点,平行于OM的直线l在y轴上的截距为m(m≠0).
(1)当m=3时,判断直线l与椭圆的位置关系(写出结论,不需证明);
(2)当m=3时,P为椭圆上的动点,求点P到直线l距离的最小值;
(3)如图,当l交椭圆于A、B两个不同点时,求证直线MA、MB与x轴始终围成一个等腰三角形.
考点分析:
相关试题推荐
如图所示,点N在圆x
2+y
2=4上运动,DN⊥x轴,点M在DN的延长线上,且
(λ>0).
(1)求点M的轨迹方程,并求当λ为何值时M的轨迹表示焦点在x轴上的椭圆;
(2)当
时,(1)所得曲线记为C,已知直线
,P是l上的动点,射线OP(O为坐标原点)交曲线C于点R,又点Q在OP上且满足|OQ|•|OP|=|OR|
2,求点Q的轨迹方程.
查看答案
在2009年“家电下乡”活动中,某品牌家电厂家从某地购买该品牌家电的用户中随机抽取20名用户进行满意度调查.设满意度最低为0,最高为10,抽查结果统计如下:
满意度分组 | [0,2) | [2,4) | [4,6) | [6,8) | [8,10] |
用户数 | 1 | 2 | 4 | 5 | 8 |
(1)成下列频率分布直方图;
(2)估计这20名用户满意度的中位数;
(3)设第四组(即满意度在区间[6,8)内)的5名用户的满意度数据分别为:6.5,7,7.5,7.5,7.9,现从中任取两名不同用户的满意度数据x、y,求|x-y|<1的概率.
查看答案
若点(x,y)是曲线
上的动点,且x
2+2y的最大值为12,则b的值为
.
查看答案
已知Ω={(x,y)|x+y<6,x>0,y>0},A={(x,y)|x<4,y>0,x-2y>0},若向区域Ω上随机投掷一点P,则点P落入区域A的概率为
.
查看答案
已知椭圆C的方程为
.
(1)求椭圆C的离心率的取值范围;
(2)若椭圆C与椭圆2x
2+5y
2=50有相同的焦点,且过点M(4,1),求椭圆C的标准方程.
查看答案