先以D为原点建立空间直角坐标系,写出相关点的坐标,(1)先利用线面垂直的判定定理求平面ABC1D1的法向量,再求与此法向量的夹角的余弦值,其绝对值就是线面角的正弦值;
(2)设=λ,将用λ表示,要使MN∥A1C,只需存在μ,使=μ,列方程组即可解得λ的值,从而确定N点位置
【解析】
如图建立空间直角坐标系:设正方体棱长为1
则D(0,0,0),A(1,0,0),B(1,1,0),C1(0,1,1),D1(0,0,1),B1(1,1,1),A1(1,0,1),C(0,1,0)
(1)=(0,1,1),=(-1,0,1),=(0,1,0)
设平面ABC1D1所的法向量为=(x,y,z)
则.取=(1,0,1)
cos<,>===
设直线AB1和平面ABC1D1所成的角为θ
则sinθ=,又θ∈[0,]
∴θ=
∴直线AB1和平面ABC1D1所成的角为
(2)=(-1,1,-1),=(-1,0,1),
∵BM=,
∴==(-,0,)
设=λ=λ(0,-1,-1)=(0,-λ,-λ)
则=++=(,0,-)+(0,0,1)+(0,-λ,-λ)=(,-λ,-λ)
∵MN∥A1C.
∴(,-λ,-λ)=μ(-1,1,-1),∴
解得λ=
∴当=时,MN∥A1C.