已知平面上的线段l及点P,任取l上一点Q,线段PQ长度的最小值称为点P到线段l的距离,记作d(P,l)
(1)求点P(1,1)到线段l:x-y-3=0(3≤x≤5)的距离d(P,l);
(2)设l是长为2的线段,求点的集合D={P|d(P,l)≤1}所表示的图形面积;
(3)写出到两条线段l
1,l
2距离相等的点的集合Ω={P|d(P,l
1)=d(P,l
2)},其中l
1=AB,l
2=CD,A,B,C,D是下列三组点中的一组.
对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分.
①A(1,3),B(1,0),C(-1,3),D(-1,0).
②A(1,3),B(1,0),C(-1,3),D(-1,-2).
③A(0,1),B(0,0),C(0,0),D(2,0).
查看答案