满分5 > 高中数学试题 >

已知函数f(x)=lnx-ax2+(2-a)x. (I)讨论f(x)的单调性; ...

已知函数f(x)=lnx-ax2+(2-a)x.
(I)讨论f(x)的单调性;
(Ⅱ)设a>0,证明:当0<x<manfen5.com 满分网时,f(manfen5.com 满分网+x)>f(manfen5.com 满分网-x);
(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x,证明:f′(x)<0.
(I)求导,并判断导数的符号,确定函数的单调区间;(II)构造函数g(x)=f(+x)-f(-x),利用导数求函数g(x)当0<x<时的最小值大于零即可,(III)设出函数y=f(x)的图象与x轴交于A,B两点的横坐标,根据(I).(II)结论,即可证明结论. 【解析】 (I)函数f(x)的定义域为(0,+∞), f′(x)==-, ①若a>0,则由f′(x)=0,得x=,且当x∈(0,)时,f′(x)>0, 当x∈(,+∞)时,f′(x)<0, 所以f(x)在(0,)单调递增,在(,+∞)上单调递减; ②当a≤0时,f(x)>0恒 成立,因此f(x)在(0,+∞)单调递增; (II)设函数g(x)=f(+x)-f(-x),则g(x)=ln(1+ax)-ln(1-ax)-2ax, g′(x)==, 当x∈(0,)时,g′(x)>0,而g(0)=0, 所以g(x)>0, 故当0<x<时,f(+x)>f(-x); (III)由(I)可得,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点, 故a>0,从而f(x)的最大值为f(),且f()>0, 不妨设A(x1,0),B(x2,0),0<x1<x2, 则0<x1<<x2, 由(II)得,f(-x1)=f()>f(x1)=f(x2)=0, 又f(x)在(,+∞)单调递减, ∴-x1<x2,于是x=, 由(I)知,f′( x)<0.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=x2第一象限部分上的一系列点Ai(i=1,2,3,…,n,…)与y正半轴上的点B1及原点,构成一系列正三角形AiBi-1Bi(记B为O),记ai=|AiAi+1|.
(1)求a1,a2的值;
(2)求数列{an}的通项公式an
(3)求证:manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
已知函数f(x)=-x3+6x2-9x.若过点P(-1,m)可作曲线y=f(x)的切线有三条,求实数m的取值范围.
查看答案
一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为x1,x2,记ξ=(x1-3)2+(x2-3)2
(1)分别求出ξ取得最大值和最小值时的概率;
(2)求ξ的分布列及数学期望.
查看答案
已知在△ABC中,角A,B,C的对边为a,b,c向量manfen5.com 满分网manfen5.com 满分网,且m⊥n.
(I)求角C的大小.
(Ⅱ)若manfen5.com 满分网,求sin(A-B)的值.
查看答案
对于函数f(x)=manfen5.com 满分网+(3-a)|x|+b,若f(x)有六个不同的单调区间,则a的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.