满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=-x2+ax-3. (1)求函数f(x)在[t...

已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.
(1)f'(x)=lnx+1,当单调递减,当单调递增,由此进行分类讨论,能求出函数f(x)在[t,t+2](t>0)上的最小值. (2)由2xlnx≥-x2+ax-3,知,设,则,由此入手能够求出实数a的取值范围. 【解析】 (1)∵f(x)=xlnx, ∴f'(x)=lnx+1,…(1分) 当单调递减, 当单调递增,…(3分) ①,没有最小值;  …(4分) ②,即时,;…(5分) ③,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt…(6分) 所以…(7分) (2)2xlnx≥-x2+ax-3,则,…(9分) 设, 则,…(10分) ①x∈(0,1),h'(x)<0,h(x)单调递减, ②x∈(1,+∞),h'(x)>0,h(x)单调递增, 所以h(x)min=h(1)=4, 对一切x∈(0,+∞),2f(x)≥g(x)恒成立, ∵g(x)=-x2+ax-3.所以a≤h(x)min=4;…(13分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a,b,c,且manfen5.com 满分网,若b=2a,求a,b的值.
查看答案
已知等差数列{an}是递增数列,且满足a4•a7=15,a3+a8=8.
(1)求数列{an}的通项公式;
(2)令manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),则关于x的不等式cx2-bx+a>0有如下解法:由manfen5.com 满分网,令manfen5.com 满分网,则manfen5.com 满分网,所以不等式cx2-bx+a>0的解集为manfen5.com 满分网.参考上述解法,已知关于x的不等式manfen5.com 满分网的解集为(-2,-1)∪(2,3),则关于x的不等式manfen5.com 满分网的解集    查看答案
函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则manfen5.com 满分网+manfen5.com 满分网的最小值为    查看答案
函数f(x)由下表定义:若a1=5,an+1=f(an),n=1,2,3…,则a2010=   
x25314
F(x)12345
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.