满分5 > 高中数学试题 >

如图,某小区准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的...

manfen5.com 满分网如图,某小区准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余地方种花.若BC=20米,∠ABC=θ,设△ABC的面积为S1,正方形PQRS的面积为S2,将比值manfen5.com 满分网称为“规划合理度”.
(1)试用θ表示S1和S2
(2)当θ变化时,求“规划合理度”取得最小值时的角θ的大小.
(1)据题知三角形ABC为直角三角形,根据三角函数分别求出AC和AB,求出三角形ABC的面积S1;设正方形PQRS的边长为x,利用三角函数分别表示出BQ和RC,利用BQ+QR+RC=20列出方程求出x,算出S2; (2)由比值称为“规划合理度”,可设t=sin2θ来化简求出S1与S2的比值,利用三角函数的增减性求出比值的最小值即可求出此时的θ. 【解析】 (1)如图,在Rt△ABC中,AC=20sinθ,AB=20cosθ, =100sin2θ, 设正方形的边长为x则, ∴, ∴=,; (2)t=sin2θ而S2=∴, ∵0<θ<,又0<2θ<π,∴0<t≤1∴为减函数 当t=1时取得最小值为此时.
复制答案
考点分析:
相关试题推荐
已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a,b,c,且manfen5.com 满分网,若b=2a,求a,b的值.
查看答案
已知等差数列{an}是递增数列,且满足a4•a7=15,a3+a8=8.
(1)求数列{an}的通项公式;
(2)令manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
研究问题:“已知关于x的不等式ax2-bx+c>0的解集为(1,2),则关于x的不等式cx2-bx+a>0有如下解法:由manfen5.com 满分网,令manfen5.com 满分网,则manfen5.com 满分网,所以不等式cx2-bx+a>0的解集为manfen5.com 满分网.参考上述解法,已知关于x的不等式manfen5.com 满分网的解集为(-2,-1)∪(2,3),则关于x的不等式manfen5.com 满分网的解集    查看答案
函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则manfen5.com 满分网+manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.