满分5 >
高中数学试题 >
设集合M={x|2-x>0},N={x|x2-4x+3<0},U=R,则(CUM...
设集合M={x|2-x>0},N={x|x2-4x+3<0},U=R,则(CUM)∩N是( )
A.{x|x>1}
B.{x|x≥2}
C.{x|x<3}
D.{x|2≤x<3}
考点分析:
相关试题推荐
过圆C:(x-6)
2+(y-4)
2=8上一点A(4,6)作圆的一条动弦AB,点P为弦AB的中点.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点P关于x=1的对称点为E,关于y=x的对称点为F,求|EF|的取值范围.
查看答案
如图,四棱锥P-ABCD中,底面ABCD为菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.
(1)求作平面PAD与平面PBC的交线,并加以证明;
(2)求PA与平面PBC所成角的正弦值;
(3)求平面PAD与平面PBC所成锐二面角的正切值.
查看答案
已知圆C的圆心为原点O,且与直线
相切.
(1)求圆C的方程;
(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,求证:直线AB恒过定点.
查看答案
已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.
(1)求△ABC的顶点B,C的坐标;
(2)若圆M经过A,B且与直线x-y+3=0相切于点P(-3,0),求圆M的方程.
查看答案
如图(1),边长为2的正方形ABEF中,D,C分别为EF,AF上的点,且ED=CF,现沿DC把△CDF剪切、拼接成如图(2)的图形,再将△BEC,△CDF,△ABD沿BC,CD,BD折起,使E,F,A三点重合于点A′.
(1)求证:BA′⊥CD;
(2)求四面体B-A′CD体积的最大值.
查看答案