满分5 > 高中数学试题 >

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40...

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.图1是甲流水线样本的频率分布直方图,表1是乙流水线样本频数分布表.
manfen5.com 满分网
(1)若以频率作为概率,试估计从甲流水线上任取5件产品,求其中合格品的件数X的数学期望;
(2)从乙流水线样本的不合格品中任意取2件,求其中超过合格品重量的件数Y的分布列;
(3)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线乙流水线  合计
合格品a=b=
不合格品c=d=
合 计n=
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:下面的临界值表供参考:
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
(1)根据所给的每一组的频数和样本容量做出每一组的频率,在平面直角坐标系中做出频率分步直方图. (2)根据所给的以样本中的合格品数,除以样本容量做出合格品的频率,可估计从乙流水线上任取一件产品该产品为合格品的概率,得到变量符合二项分布,做出概率. (3)根据所给的数据,列出列联表,根据所给的观测值的公式,代入数据做出观测值,同临界值进行比较,得到有90%的把握认为产品的包装质量与两条自动包装流水线的选择有关. 【解析】 (1)由图1知,甲样本中合格品数为(0.06+0.09+0.03)×5×40=36, 故合格品的频率为, 据此可估计从甲流水线上任取一件产品该产品为合格品的概率P=0.9, 则X~(5,0.9),EX=4.5---------(4分) (2)由表1知乙流水线样本中不合格品共10个,超过合格品重量的有4件; 则Y的取值为0,1,2;且,于是有: ∴Y的分布列为 Y 1 2 P ------(10分) 甲流水线  乙流水线   合计 合格品 a=36 b=30 66 不合格品 c=4 d=10 14 合 计 40 40 n=80 (3)2×2列联表如下: ∵=>2.706 ∴有90%的把握认为产品的包装质量与两条自动包装流水线的选择有关.------(14分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(I)求f(x)的单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且manfen5.com 满分网,求a的值.
查看答案
已知数列{an}满足:a1=1,a2=2,manfen5.com 满分网,数列{bn}满足b1=2,anbn+1=2an+1bn
(Ⅰ)求数列{an}的通项an; 
(Ⅱ)求证:数列manfen5.com 满分网为等比数列;并求数列{bn}的通项公式.
查看答案
给出定义:若m-manfen5.com 满分网<x≤m+manfen5.com 满分网(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,manfen5.com 满分网];
②函数y=f(x)的图象关于直线x=manfen5.com 满分网(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-manfen5.com 满分网manfen5.com 满分网]上是增函数.
其中正确的命题的序号    查看答案
manfen5.com 满分网设x,y满足约束条件manfen5.com 满分网,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则manfen5.com 满分网的最小值为    查看答案
已知双曲线manfen5.com 满分网的左右焦点分别是F1,F2,P点是双曲线右支上一点,且|PF2|=|F1F2|,则三角形PF1F2的面积等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.