满分5 > 高中数学试题 >

设函数f(x)=x2+bln(x+1),其中b≠0. (1)若b=-12,求f(...

设函数f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)在[1,3]的最小值;
(2)如果f(x)在定义域内既有极大值又有极小值,求实数b的取值范围;
(3)是否存在最小的正整数N,使得当n≥N时,不等式manfen5.com 满分网恒成立.
(1)当b=-12时,由得x=2,可判断出当x∈[1,2)时,f(x)单调递减;当x∈(2,3]时,f(x)单调递增,故f(x)在[1,3]的最小值在x=2时取得. (2)要使f(x)在定义域内既有极大值又有极小值,即f(x)在定义域内与X轴有三个不同的交点,即使在(-1,+∞)有两个不等实根,即2x2+2x+b=0在(-1,+∞)有两个不等实根,可以利用一元二次函数根的分布可得,解之即可求b的范围. (3)先构造函数h(x)=x3-x2+ln(x+1),然后研究h(x)在[0,+∞)上的单调性,求出函数h(x)的最小值,从而得到ln(x+1)>x2-x3,最后令,即可证得结论. 【解析】 (1)由题意知,f(x)的定义域为(-1,+∞), b=-12时,由,得x=2(x=-3舍去), 当x∈[1,2)时,f′(x)<0,当x∈(2,3]时,f′(x)>0, 所以当x∈[1,2)时,f(x)单调递减;当x∈(2,3]时,f(x)单调递增, 所以f(x)min=f(2)=4-12ln3 (2)由题意在(-1,+∞)有两个不等实根, 即2x2+2x+b=0在(-1,+∞)有两个不等实根, 设g(x)=2x2+2x+b,则,解之得; (3)对于函数f(x)=x2-ln(x+1),令函数h(x)=x3-f(x)=x3-x2+ln(x+1) 则, ∴当x∈[0,+∞)时,h′(x)>0 所以函数h(x)在[0,+∞)上单调递增, 又h(0)=0, ∴x∈(0,+∞)时,恒有h(x)>h(0)=0 即x2<x3+ln(x+1)恒成立. 取,则有恒成立. 显然,存在最小的正整数N=1,使得当n≥N时,不等式恒成立
复制答案
考点分析:
相关试题推荐
椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,右焦点到直线manfen5.com 满分网的距离为manfen5.com 满分网,过M(0,-1)的直线l交椭圆于A,B两点.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 若直线l交x轴于N,manfen5.com 满分网,求直线l的方程.
查看答案
manfen5.com 满分网如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求二面角P-BC-A的大小.
查看答案
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.图1是甲流水线样本的频率分布直方图,表1是乙流水线样本频数分布表.
manfen5.com 满分网
(1)若以频率作为概率,试估计从甲流水线上任取5件产品,求其中合格品的件数X的数学期望;
(2)从乙流水线样本的不合格品中任意取2件,求其中超过合格品重量的件数Y的分布列;
(3)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线乙流水线  合计
合格品a=b=
不合格品c=d=
合 计n=
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:下面的临界值表供参考:
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
查看答案
已知函数manfen5.com 满分网
(I)求f(x)的单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且manfen5.com 满分网,求a的值.
查看答案
已知数列{an}满足:a1=1,a2=2,manfen5.com 满分网,数列{bn}满足b1=2,anbn+1=2an+1bn
(Ⅰ)求数列{an}的通项an; 
(Ⅱ)求证:数列manfen5.com 满分网为等比数列;并求数列{bn}的通项公式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.