满分5 > 高中数学试题 >

已知a∈R,函数f(x)=x|x-a|, (Ⅰ)当a=2时,写出函数y=f(x)...

已知a∈R,函数f(x)=x|x-a|,
(Ⅰ)当a=2时,写出函数y=f(x)的单调递增区间;
(Ⅱ)当a>2时,求函数y=f(x)在区间[1,2]上的最小值;
(Ⅲ)设a≠0,函数f(x)在(m,n)上既有最大值又有最小值,请分别求出m、n的取值范围(用a表示).
(I)将a=2代入函数的解析得出f(x)=x|x-2|,将其变为分段函数,利用二次函数的图象与性质研究其单调性即可 (Ⅱ)当a>2时,函数y=f(x)在区间[1,2]上解析式是确定的,去掉绝对号后根据二次函数的性质确定其单调性,再求最值. (Ⅲ)a≠0,函数f(x)在(m,n)上既有最大值又有最小值说明在函数最值不在区间端点处取得,在这个区间内必有两个极值,由函数的性质确定出极值,由于极值即为最值,故可借助函数的图象得m、n的取值范围. 【解析】 (Ⅰ)当a=2时,f(x)=x|x-2|= 由二次函数的性质知,单调递增区间为(-∞,1],[2,+∞)(开区间不扣分) (Ⅱ)因为a>2,x∈[1,2]时,所以f(x)=x(a-x)=-x2+ax= 当1<≤,即2<a≤3时,f(x)min=f(2)=2a-4 当,即a>3时,f(x)min=f(1)=a-1 ∴ (Ⅲ) ①当a>0时,图象如上图左所示 由得 ∴, ②当a<0时,图象如上图右所示 由得 ∴,
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+manfen5.com 满分网(x≠0,a∈R)
(1)当a为何值时,函数f(x)为偶函数;
(2)若f(x)在区间[2,+∞)是增函数,求实数a的取值范围.
查看答案
已知f(x)为R上的奇函数,当x>0时,f(x)为二次函数,且满足f(2)=-1,不等式组manfen5.com 满分网的解集是{x|1<x<3}.
(1)求函数f(x)的解析式;
(2)作出f(x)的图象并根据图象讨论关于x的方程:f(x)-c=0(c∈R)根的个数.

manfen5.com 满分网 查看答案
已知定义域为R的函数f(x)=manfen5.com 满分网是奇函数.
(Ⅰ)求b的值;
(Ⅱ)判断函数f(x)的单调性;
(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
查看答案
已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)分别求:∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.
查看答案
计算下列各题:
manfen5.com 满分网
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.