满分5 > 高中数学试题 >

已知函数 (I)当0<a<b,且f(a)=f(b)时,求的值; (II)是否存在...

已知函数manfen5.com 满分网
(I)当0<a<b,且f(a)=f(b)时,求manfen5.com 满分网的值;
(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(I)由f(x)在(0,1)上为减函数,在(1,+∞)上是增函数.0<a<b,且f(a)=f(b),推得0<a<1<b,   从而分别求得f(a),f(b),根据其关系得到结论. (II)先假设存在满足条件的实数a,b,由于f(x)是分段函数,则分当a,b∈(0,1)2时,a,b∈[1,+∞)    a∈(0,1),b∈[1,+∞)时三种情况分析. 【解析】 (I)∵ ∴f(x)在(0,1)上为减函数,在(1,+∞)上是增函数. 由0<a<b,且f(a)=f(b),可得0<a<1<b且.所以. (II)不存在满足条件的实数a,b. 若存在满足条件的实数a,b,则0<a<b 当a,b∈(0,1)时,在(0,1)上为减函数. 故即解得a=b. 故此时不存在适合条件的实数a,b. 当a,b∈[1,+∞)时,在(1,+∞)上是增函数. 故即 此时a,b是方程x2-x+1=0的根,此方程无实根. 故此时不存在适合条件的实数a,b. 当a∈(0,1),b∈[1,+∞)时,由于1∈[a,b],而f(1)=0∉[a,b], 故此时不存在适合条件的实数a,b. 综上可知,不存在适合条件的实数a,b.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+x-2,设满足“当manfen5.com 满分网时,不等式f(x)+3<2x+a恒成立”的实数a的集合为A,满足“当x∈[-2,2]时,g(x)=f(x)-ax是单调函数”的实数a的集合为B,求A∩CRB(R为实数集).
查看答案
已知y=f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=x2-2x+1.
(1)求f(x)的解析式;
(2)写出f(x)的单调区间.(不要求证明)
查看答案
已知△OAB是边长为2的正三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f(t),求函数f(t)的表达式.manfen5.com 满分网
查看答案
化简下列各式:
(1)manfen5.com 满分网
(2)manfen5.com 满分网
查看答案
已知集合A={x|x>1},B={x|a<x<a+1}.
(1)若B⊆A,求实数a的取值范围;
(2)若A∩B≠∅,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.