某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A
1B
1C
1D
1和环公园人行道(阴影部分)组成.已知休闲区A
1B
1C
1D
1的面积为4000平方米,人行道的宽分别为4米和10米(如图)
(Ⅰ)若设休闲区的长和宽的比
,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(Ⅱ)要使公园所占面积最小,休闲区A
1B
1C
1D
1的长和宽该如何设计?
考点分析:
相关试题推荐
已知f(x)=ax+b(a≠0 ),且f(2),f(5)f(4)成等比数列,f(8)=15,求和 S
n=f(1)+f(2)+…+f(n)的值.
查看答案
锐角△ABC中,内角A,B,C的对边分别为a,b,c,且a=2bsinA,
(1)求角B的值;
(2)设
及△ABC的面积.
查看答案
已知集合A={x|-4<x
2-5x+2<26},B={x|-x
2+4x-3<0},求A∩B及C
R(A∩B).
查看答案
已知函数y=a
x+2-2(a>0,a≠1)过定点A(x,y),且点A(x,y)满足方程mx+ny+2=0(m>0,n>0),则
的最小值为
.
查看答案
1+2×3+3×3
2+…+n×3
n-1=
.
查看答案