满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且...

manfen5.com 满分网如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(I)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=manfen5.com 满分网,∠CDA=45°,求四棱锥P-ABCD的体积.
(I)由已知容易证PA⊥CE,CE⊥AD,由直线与平面垂直的判定定理可得 (II)由(I)可知CE⊥AD,从而有四边形ABCE为矩形,且可得P到平面ABCD的距离PA=1,代入锥体体积公式可求 【解析】 (I)证明:因为PA⊥平面ABCD,CE⊂平面ABCD, 所以PA⊥CE, 因为AB⊥AD,CE∥AB,所以CE⊥AD 又PA∩AD=A,所以CE⊥平面PAD (II)由(I)可知CE⊥AD 在Rt△ECD中,DE=CDcos45°=1,CE=CDsin45°=1,又因为AB=CE=1,AB∥CE 所以四边形ABCE为矩形 所以 = 又PA平面ABCD,PA=1 所以
复制答案
考点分析:
相关试题推荐
某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:
(1)求表中a和b的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.

manfen5.com 满分网 manfen5.com 满分网 查看答案
已知函数y=|x-3|,如图,程序框图表示的是给定x值,求其相应函数值的算法.请将该程序框图补充完整,其中①处填    .②处填   
manfen5.com 满分网 查看答案
已知实数x,y满足约束条件,manfen5.com 满分网则z=y-x的最大值为    查看答案
某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为    查看答案
在空间直角坐标系中,点(3,-4,1)关于y轴对称的点的坐标是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.