某农场计划种植某种新作物.为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验,选取两大块地,每大块地分成n小块地,在总共2n小块地中.随机选n小块地种植品种甲,另外n小块地种植品种乙
(Ⅰ)假设n=2,求第一大块地都种植品种甲的概率:
(Ⅱ)试验时每大块地分成8小块.即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kg/hm
2)如下表:
品种甲 | 403 | 397 | 390 | 404 | 388 | 400 | 412 | 406 |
品种乙 | 419 | 403 | 412 | 418 | 408 | 423 | 400 | 413 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据x
1,x
2…x
n的样本方差S
2=
[(x
1-
)]
2+…+(x
n-
)
2],其中
为样本平均数.
考点分析:
相关试题推荐
设直线l
1:y=k
1x+1,l
2:y=k
2x-1,其中实数k
1,k
2满足k
1k
2+2=0
(1)证明l
1与l
2相交;
(2)证明l
1与l
2的交点在椭圆2x
2+y
2=1上.
查看答案
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(I)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=
,∠CDA=45°,求四棱锥P-ABCD的体积.
查看答案
某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:
(1)求表中a和b的值;
(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.
查看答案
已知函数y=|x-3|,如图,程序框图表示的是给定x值,求其相应函数值的算法.请将该程序框图补充完整,其中①处填
.②处填
.
查看答案
已知实数x,y满足约束条件,
则z=y-x的最大值为
.
查看答案