(1)由题设知,N(2n)=N(n),N(2n-1)=2n-1.S(4)=[N(1)+N(3)+N(5)+…+N(15)]+[N(2)+N(4)+N(6)+…+N(16)]=[1+3+5+…+15]+[N(2)+N(4)+N(6)+…+N(16)].由此能求出S(4).
(2)由S(n)=[1+3+5+…+(2n-1)]+[N(2)+N(4)+N(6)+…+N(2n)],知S(n)=4n-1+S(n-1)(n≥1),由此能推导出.
【解析】
(1)由题设知,N(2n)=N(n),N(2n-1)=2n-1.
S(4)=[N(1)+N(3)+N(5)+…+N(15)]+[N(2)+N(4)+N(6)+…+N(16)]
=[1+3+5+…+15]+[N(2)+N(4)+N(6)+…+N(16)]
=43+S(3)
=43+42+S(2)
=43+42+41+S(1)=86.
(2)S(n)=[1+3+5+…+(2n-1)]+[N(2)+N(4)+N(6)+…+N(2n)],
∴S(n)=4n-1+S(n-1)(n≥1),
又S1=N(1)=1,
∴.