由题意可知a1,a2,a3,a4,a5的值,则a2-a1=5,a3-a2=9,a4-a3=13,a5-a4=17,猜想a6-a5=21,从而得a6的值和an-an-1=4n-3;所以(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)+…+(an-an-1)=an-a1求得通项公式an,从而求得前n项和sn.
【解析】
由题意,知a1=1,a2=6,a3=15,a4=28,a5=45,a6=66,…;
∴a2-a1=5,a3-a2=9,a4-a3=13,a5-a4=17,a6-a5=21,…,an-an-1=4n-3;
∴(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)+(a6-a5)+…+(an-an-1)
=an-a1=5+9+13+17+21+…+(4n-3)==2n2-n-1;
∴an=2n2-n,其前n项和为sn=2(12+22+32+…+n2)-(1+2+3+…+n)
=2×-=.
故答案为:66,.